Resilience in crisis

SUBHEAD: Why the Future Will Be Flexible.
By Jamais Cascio on 3 April 2009 in Fast Company
image above: A classic example of resilience in the face of long odds.
What will a post-crash, truly 21st-century world look like? For people 
thinking about global systems (economic, environmental, and social) 
one idea stands out: resilience.
Resilience means the capacity of an entity--such as a person, an 
institution, or a system--to withstand sudden, unexpected shocks, 
and (ideally) to be capable of recovering quickly afterwards. 
Resilience implies both strength and flexibility; a resilient 
structure would bend, but would be hard to break. The term was once 
found largely in psychology textbooks and material science research, but the systems design crowd has, 
over the past few years, enthusiastically adopted the concept.
Designing for resilience takes on particular relevance as we think 
about what happens after the current economic crisis passes. It's 
easy, in the midst of a chaotic situation, to focus solely on 
immediate issues, but periods in which everyone else is grappling with 
the present are precisely when it's the most critical to think about 
tomorrow. And while we can't predict exactly what will happen in the 
future, we can get a pretty good sense of what kinds of drivers will 
shape it--and how we might influence those drivers.

What would a more resilient world look like? There's no universal 
"resilience theory" just yet, but some of the principles employed by ecologists and designers thinking about 
resilient systems give us a hint.
Two factors stand out as core assumptions of a resilience approach: 
the future is inherently uncertain, so the system needs to be as 
flexible as possible; and failures happen, so the system needs to be 
able to identify failures early and not make things worse as a result. 
These may seem like common-sense notions, but today's global systems 
work best when everything's running smoothly and predictably. 
Resilient systems are optimized for rough roads with sudden turns.
Resilient flexibility means avoiding situations where components of a 
system are "too big to fail"--that is, where the failure of a single 
part can bring the whole thing crashing down. The alternative comes 
from the combination of diversity (lots of different parts), 
collaboration (able to work together), and decentralization (organized 
from the bottom-up). The result is a system that can more effectively 
respond to rapid changes in conditions, and including the unexpected 
loss of components.
A good comparison of the two models can be seen in the contrast 
between the current electricity grid (centralized, with limited diversity) 
and the "smart grid" model being debated (decentralized and highly 
diverse). Today's power grid is brittle, and the combination of a few 
local failures can make large sections collapse; a smart grid has a 
wide variety of inputs, from wind farms to home solar to biofuel 
generators, and its network is designed to handle the churn of local 
power sources turning on and shutting off.
The recognition that failure happens is the other intrinsic part of a 
resilience approach. Mistakes, malice, pure coincidence--there's no 
way to rule out all possible ways in which a given system can stumble. 
The goal, therefore, should be to make failures easy to spot through 
widespread adoption of transparency through a "given enough eyeballs, all bugs are shallow" embrace of 
openness, and to give the system enough redundancy and slack that it's 
possible to absorb the failures that get through. If you know that you 
can't rule out failure, you need to be able to "fail gracefully," in 
the language of design.
The difference between brittle failure and graceful failure can be 
seen vividly in how different coastal areas deal with ocean surges (whether from 
storms or tsunamis). Levees, seawalls, and other "hard barriers" can 
be completely effective unless breached--but once breached, can (and 
often will) fail catastrophically. Regions relying on abundant coastal 
wetlands, mangrove forests, and similar "soft barriers," conversely, 
are likely to see a bit of flooding, but the mass of the ocean surge 
will be absorbed and dissipated by the environment.
You don't have to be trying to come up with a new global economic 
model to appreciate resilience. Increasingly, the concept is taking 
root in organizations of all types as a strategic guideline, and becoming part of the language of design 
for everything from software to cities. In some circles, it's starting to replace 
"sustainability" as an environmental driver.
One reason why the idea of resilience resonates with those of us 
engaged in foresight work is that, as troubling as it may be to 
contemplate, the current massive economic downturn is likely to be 
neither the only nor the biggest crisis we face over the next few 
decades. The need to shift quickly away from fossil fuels (for both 
environmental and supply reasons) may be as big a shock as today's 
"econalypse," and could easily be compounded by accelerating problems 
caused by global warming. Demographic issues--aging populations, 
migrants and refugees, and changing regional ethnic make-ups--loom 
large around the world, notably in China. Pandemics, resource 
collapse, even radically disruptive technologies all have the 
potential to cause global shake-ups on the scale of what we see 
today... and we may see all of these, and more, over the next 20 to 30 
years.
It's going to be a bumpy ride--we should be ready.

 Jamais Cascio covers the intersection of emerging technologies and cultural transformation, focusing on the importance of long-term, systemic thinking. Cascio is an affiliate at the Institute for the Future and senior fellow at the Institute for Ethics and Emerging Technologies. He co-founded WorldChanging.com, and also blogs at OpenTheFuture.com.

No comments :

Post a Comment